Regiospecific Coordination of tert-Butylfulleride Ion and 1,4-Dicyclopropyltropylium Ion. Synthesis of a Dialkyldihydrofullerene Having a **Heterolytically Dissociative** Carbon–Carbon σ Bond

Toshikazu Kitagawa,* Toru Tanaka, Yuki Takata, and Ken'ichi Takeuchi*

Division of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan

Koichi Komatsu

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

Received November 3, 1994

The high electron affinity¹ of fullerene (C_{60}) suggests that this important structure is a framework of highly stabilized carbanions. Recent studies of the controlled addition of organolithium and Grignard reagents to C_{60} demonstrated the formation of monosubstituted fulleride ions (RC_{60}^{-}) in high yields.²⁻⁵ Their regiospecific protonation to form 1-R-1,2-dihydrofullerenes (Scheme 1)⁶ as thermodynamically-controlled products²⁻⁵ has suggested that stepwise introduction of two different alkyl groups into distinct positions of the C₆₀ framework can be achieved by using RC_{60}^{-} as a nucleophile. The reported high stability of t-BuC₆₀⁻ (1⁻) toward electrophiles² prompted us to synthesize new ionically-dissociative hydrocarbons by the carbocation-carbanion coordination of 1^- and highly stabilized hydrocarbon cations. Here we report the synthesis of a disubstituted dihydrofullerene 3 in isomerically pure form by the reaction of *tert*-butylfulleride ion (1^{-}) , generated by deprotonation of t-BuC₆₀H, with 1,4-dicyclopropyltropylium ion $(2^+)^7$ and its reversible heterolysis to regenerate 1^- and 2^+ in highly polar solvents.

A dark green solution of K^+1^- was prepared by treating a THF solution (6 mL) of t-BuC₆₀H (6.93 mg) with t-BuOK (5% excess) under argon. Addition of 1.1 equiv of $2^+BF_4^$ in THF-CH₃CN (3:1, 0.4 mL) gave a brown solution, which after removal of the solvent under vacuum left a dark brown residue. The residue was dissolved in CS_2 and quickly passed through a short SiO₂ column to remove KBF4 and unchanged reactants as well as small amounts of polar byproducts. Evaporation of CS2 yielded the coordination product as a dark brown solid (7.0 mg, 83%).

Further purification of this solid by MPLC (SiO_2) was unsuccessful owing to partial decomposition to t-BuC₆₀H.

- (1) (a) Stinchcombe, J.; Pénicaud, A.; Bhyrappa, P.; Boyd, P. D. W.; Reed, C. A. J. Am. Chem. Soc. 1993, 115, 5212. (b) Dubois, D.; Jones, M. T.; Kadish, K. M. J. Am. Chem. Soc. 1992, 114, 6446 and references cited therein.
- (2) Fagan, P. J.; Krusic, P. J.; Evans, D. H.; Lerke, S. A.; Johnston, E. J. Am. Chem. Soc. 1992, 114, 9697.
- (3) (a) Hirsch, A.; Grösser, T.; Skiebe, A.; Soi, A. Chem. Ber. 1993, 126, 1061. (b) Hirsch, A.; Soi, A.; Karfunkel, H. R. Angew. Chem., Int.
- India (M. 1992, 31, 766.
 (4) Nagashima, H.; Terasaki, H.; Kimura, E.; Nakajima, K.; Itoh, K. J. Org. Chem. 1994, 59, 1246.
 (5) Komatsu, K.; Murata, Y.; Takimoto, N.; Mori, S.; Sugita, N.; Wan, C. S. (1994)

Scheme 1

H1 RC60 R = alkyl, alkenyl alkynyl, phenyl

The mass spectrum (FAB, negative ion, o-nitrophenyl octyl ether matrix) showed signals at m/z 777 (t-BuC₆₀) and 720 (C_{60}), but the molecular ion signal for the 1:1 coordination product (m/z 948) was not clearly observed owing to facile cleavage of the t-BuC₆₀-C bond (vide infra).8

In principle, formation of a carbon-carbon covalent bond between 1^- and 2^+ can produce $3 \times 4 + (56 \times 7)/2$ = 208 isomeric hydrocarbons if the positive and negative charges of the precursor ions are fully delocalized over the conjugated π -systems of the tropylium ring and the C_{60} framework, respectively. The NMR spectroscopic data, however, reveal that the product consists of essentially a single isomer. In the ¹H NMR spectrum,⁹ the cycloheptatriene moiety shows a triplet at δ 3.39 and four doublets in the olefinic region, indicating that the cyclopropyl groups are attached to positions 3 and 6 of the 2,4,6-cycloheptatrien-1-yl ring. The unequal chemical shifts of H-2 and H-7 and those of H-4 and H-5 indicate that the molecule has no symmetry plane. The ¹³C NMR spectrum,^{9,10} in which all the 77 carbons other than the three methyl carbons in the tert-butyl group exhibit different chemical shifts, is also consistent with this conclusion.

AM1 calculations by Hirsch et al.^{3b} showed that the negative charge of 1^{-} is distributed mostly on C-2, -4, and -11. We propose structure 3 (Scheme 2), i.e., a 1,4adduct across a six-membered ring, for our coordination product on the basis of the absence of symmetry. This structure is supported by the ¹H NMR NOE difference spectrum, which shows that the cycloheptatriene ring is in close proximity to the *tert*-butyl group. Irradiation of the *tert*-butyl protons causes a significant enhancement (35%) of the H-1 signal together with small enhancements ($\sim 0.7\%$) of the H-4 and H-5 signals, suggesting the conformation shown in Scheme 2.

In contrast to the rapid isomerization of 1-tert-butyl-1,4-dihydrofullerene to its 1,2-isomer at 25 °C,2 3 does not rearrange in CDCl₃ even at 75 °C. PM3 calculations (Table 1) show that the heat of formation of 3 (1,4-adduct) is 18 kcal/mol lower than that of the corresponding 1,2isomer, whereas the heats of formation of the 1,4-isomers

0022-3263/95/1960-1490\$09.00/0 © 1995 American Chemical Society

T. S. M. J. Org. Chem. 1994, 59, 6101.

⁽⁶⁾ The numbering of C_{60} carbons is according to: Taylor, R. J. Chem. Soc., Perkin Trans. 2 1993, 813.

⁽⁷⁾ Komatsu, K.; Takeuchi, K.; Arima, M.; Waki, Y.; Shirai, S.; Okamoto, K. Bull. Chem. Soc. Jpn. **1982**, 55, 3257.

⁽⁸⁾ Neither the signal at m/z 948 nor 777 was clearly seen in positive

ion FAB mass spectra. (9) 3: ¹H NMR (400 MHz, CS_2 -CDCl₃ 2:1) δ 6.59 and 6.53 (AB (a) 3. If thirt (400 kHz, CS_2 = CDC13 2.1) 5 0.55 and 0.55 (a) quartet, J = 11.5 Hz, 1H each, H-4 and H-5), 6.29 (d, J = 5.9 Hz, 1H, H-2 or H-7), 5.92 (d, J = 5.9 Hz, 1H, H-7 or H-2), 3.39 (t, J = 5.9 Hz, 1H, H-1), 1.71 (s, 3H, t-Bu), 1.7-1.5 (m, 2H, cyclopropyl CH), 0.85-0.3 (m, 8H, cyclopropyl CH₂); 13 C NMR (100.5 MHz, CS_2 = CDCl₃ 2.1), 13 C CMC (100.5 MHz, CS_2 = CDCl₃ 2.1), 0.3 (m, 81, cyclopropy) CH₂, C Hant (100.5 Hint, 502 C 2003, 21.9, δ 27.8 (CH₃), 8.1, 8.0, 5.8, 5.6 (CH₂), 131.2, 130.7, 117.7, 116.0, 44.9, 16.00, 15.99 (CH), 68.3, 60.2, 39.5 (C), quaternary carbons of C₆₀ and C 2003 C 2003cycloheptatriene ring showed 60 peaks at δ 157.5–137.8 Details are given in supplementary material.

⁽¹⁰⁾ The signals of C-2 and C-7 of the cycloheptatriene ring at δ 117.7 and 116.0 were significantly broadened, indicating the contribution of a norcaradiene structure. We have reported that introduction of bulky substituents shifts the cycloheptatriene-norcaradiene equi-librium to the norcaradiene side: (a) Takeuchi, K.; Kitagawa, T.; Ueda, A.; Senzaki, Y.; Okamoto, K. *Tetrahedron* **1985**, *23*, 5455. (b) Takeuchi, K.; Kitagawa, T.; Toyama, T.; Okamoto, K. J. Chem. Soc., Chem. Commun. **1982**, 313. (c) Takeuchi, K.; Arima, M.; Okamoto, K. Tetrahedron Lett. 1981, 22, 3081

Table 1. Calculated (PM3) Heats of Formation of t-BuC₆₀H and t-Bu(C₁₃H₁₅)C₆₀ (C₁₃H₁₅ = 3,6-Dicyclopropyl-2,4,6-cycloheptatrien-1-yl)

position of substituents	heat of formation, kcal/mol	
	t-BuC ₆₀ H	t-Bu(C ₁₃ H ₁₅)C ₆₀
1,2	760.2	872.5
1,4	763.2	854.5
1,6	777.8	884.7

of *t*-BuC₆₀H (Table 1) and C₆₀H₂¹¹ are 3.0 and 3.8 kcal/ mol higher than those of the 1,2-adducts, respectively. The difference in the lower-energy isomer structure is ascribed to severe steric repulsion between the eclipsing *tert*-butyl group and the cycloheptatriene ring in the 1,2isomer of **3**. This finding suggests the possibility of controlling the formation of 1,2- and 1,4-adducts in the reaction of RC₆₀⁻ and R'⁺ by the sizes of R and R'.¹²

An unusual feature of hydrocarbon **3** is its ionization into a carbocation and a carbanion in solution. In general, thermal dissociation of carbon-carbon σ bonds in hydrocarbon molecules takes place homolytically. To our knowledge, the only exceptions are our reports of the heterolysis of a series of hydrocarbons that dissociate at 25 °C in highly polar solvents into tris(7*H*-dibenzo[*c*,*g*]fluorenylidenemethyl)methide ion (Kuhn's carbanion) and a substituted tropylium or cyclopropenylium ion.^{13,14} The high thermodynamic stabilities of 1⁻ and 2⁺, demonstrated by their respective pK_{HA} (5.7²) and pK_{R^+} (7.63⁷) values, suggest the possibility that **3** heterolyzes into $1^$ and 2^+ in highly polar media. The master equation, proposed by Arnett,¹⁵ predicts a value of 18.2 kcal/mol for the heat of heterolysis (ΔH_{het}) of **3**.

When 3 is dissolved in DMSO or DMSO- CS_2 (4:1 v/v), it dissociates partially to give a greenish yellow solution. The visible/near IR region spectra exhibit absorption peaks at 656 and 995 nm, which agree with the absorption of 1⁻ generated from t-BuC₆₀H and excess t-BuOK. By contrast, 3 shows no absorption attributable to 1⁻ in nonpolar solvents such as hexane and CS_2 .

The degree of dissociation (α) was determined in DMSO-CS₂ (4:1 v/v)¹⁶ at 25 °C by monitoring the absorbance at 995 nm (ϵ 2350) for solutions of different initial concentrations c. The agreement of dissociation constants [$K_{\text{het}} = c\alpha^2/(1 - \alpha) = 2.3 \pm 0.2 \times 10^{-6}$ M] calculated from four determinations ($\alpha = 0.30, 0.18, 0.15$, and 0.10 at c = 1.6, 6.0, 8.8, and 19×10^{-5} M, respectively) indicates that the equilibrium $\mathbf{3} \rightleftharpoons \mathbf{1}^- + \mathbf{2}^+$ is established.

The free energy of heterolysis (ΔG_{het}) calculated from the dissociation constants is 7.7 kcal/mol. We have shown^{13b,c} that heterolysis of a carbon-carbon σ bond of a hydrocarbon in DMSO to form a resonance-stabilized carbocation and carbanion is accompanied by significant loss of entropy due to strong solvation of the cation. This solvation by DMSO makes ΔH_{het} lower by ~5 kcal/mol^{13b} than ΔG_{het} , allowing us to expect the ΔH_{het} of **3** to be approximately 3 kcal/mol. This value is ca. 15 kcal/mol smaller than predicted by Arnett's master equation, indicating that the heterolysis of **3** is markedly facilitated by the steric congestion around the dissociating bond.

In summary, the facile heterolysis of the carboncarbon σ bond of **3** is attributed to the high thermodynamic stabilities of **1**⁻ and **2**⁺ and the large steric repulsion between the two substituents on the C₆₀ framework. Other ionically dissociative dialkyldihydrofullerenes are being prepared, and the effect of structural change on the heterolysis energy will be reported in due course.

Acknowledgment. This work was supported by a grant from the Ciba-Geigy Foundation (Japan) for the Promotion of Science and a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

Supplementary Material Available: ¹H and ¹³C NMR and visible/near IR region spectra of compound **3** (7 pages).

JO941843+

⁽¹¹⁾ Henderson, C. C.; Rohlfing, C. M.; Cahill, P. A. Chem. Phys. Lett. 1993, 213, 383.

⁽¹²⁾ One should also consider the possibility of single-electron transfer from RC_{60}^{-} to R'^+ to produce a pair of radicals. In the present case, however, this process is endothermic since the oxidation potential of $1^-(-0.33 \text{ V} \text{ vs ferrocene}/\text{ferrocenium in DMSO}$, ref 2) is much higher than the reduction potential of $2^+(-0.76 \text{ V vs Ag/Ag}^+$ in CH₃CN (ref 7); this potential corresponds to -0.84 V vs ferrocene/ferrocenium. For conversion from Ag/Ag⁺ to ferrocene/ferrocenium, see: Komatsu, K.; Masumoto, K.; Waki, Y.; Okamoto, K. Bull. Chem. Soc. Jpn. 1982, 55, 2470).

^{(13) (}a) Okamoto, K.; Kitagawa, T.; Takeuchi, K.; Komatsu, K.;
Kinoshita, T.; Aonuma, S.; Nagai, M.; Miyabo, A. J. Org. Chem. 1990, 55, 996. (b) Miyabo, A.; Kitagawa, T.; Takeuchi, K. J. Org. Chem. 1993, 58, 2428. (c) Takeuchi, K.; Kitagawa, T.; Miyabo, A.; Hori, H.;
Komatsu, K. J. Org. Chem. 1993, 58, 5802.

⁽¹⁴⁾ Direct observations of reversible heterolysis of carbon-carbon σ bond have been reported for molecules containing cyano and nitro groups: Troughton, E. B.; Molter, K. E.; Arnett, E. M. J. Am. Chem. Soc. **1984**, 106, 6726.

⁽¹⁵⁾ $\Delta \dot{H}_{het} = 13.18 - 0.324(pK_{R^+}) + 1.307(pK_{HA})$: (a) Arnett, E. M.; Chawla, B.; Amarnath, K.; Whitesell, Jr., L. G. *Energy Fuels* **1987**, *1*, 17. (b) Arnett, E. M.; Amarnath, K.; Harvey, N. G.; Cheng, J.-P. J. Am. Chem. Soc. **1990**, *112*, 344.

⁽¹⁶⁾ CS_2 was added to increase the solubility since **3** is sparingly soluble in DMSO.